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Disturbances generated by the passage of pressure pulses through exothermic react-
ing mixtures are analysed for high frequency wave forms when the activation energy
is large. Although wall heat loss can prevent ignition in the background state, heat-
ing within the pulse can give rise to local explosions. A determination of the critical
pulse amplitude is made, and a response diagram is developed that permits a simple
prediction of the final state at the end of the induction period.
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1. Introduction

Ignition calculations for vessel explosions at high activation energies (Semenov 1928;
Kassoy 1977; Strehlow 1984) can be interpreted as the evaluation of a critical mag-
nitude for the wall heat loss. For a subcritical case, in which the heat transfer rate is
greater than the critical value, the spatially homogeneous response to departures from
a low temperature state corresponds to a fizzle in which the temperature excursion is
small. Spatially inhomogeneous dynamic changes associated with the propagation of
pressure disturbances can, however, lead to explosive events even in situations where
the background state is subcritical. This paper is concerned with the evolution of
such disturbances and with the calculation of critical amplitudes that lead to thermal
ignition.

Only one-dimensional unsteady disturbances are considered, and a suitable phe-
nomenological model, based on Newton cooling, is used to describe heat loss to the
surroundings. The applied signal is taken to be a small-amplitude, high-frequency
pulse such that the time-scales for convective distortion, ignition, and background
cooling are comparable. Analyses of this type, neglecting heat loss to the surround-
ings, have been given by Clarke (1978, 1979) and by Blythe (1978) for situations in
which a dimensionless activation energy is large. Extensions to periodic signals have
been given by Majda & Rosales (1987). Further results can be found in Almgren
(1991), where particular emphasis is placed on shock formation. Some preliminary
results including wall heat loss were discussed in Blythe (1978). In that paper, the
heat loss term is dominated by the external (wall) temperature and does not reflect
the more delicate balance that arises when the magnitude of the cooling is coupled
to the gas temperature. It is the latter limit that is incorporated into the present
investigation, which can be viewed as an extension of the classical analysis given by
Semenov (1928).

Phil. Trans. R. Soc. Lond. A (1999) 357, 3489–3502
3489

c© 1999 The Royal Society



3490 P. A. Blythe

Since, for all cases considered here, the background perturbation temperature T∞
is a monotonic function of the time t, it is sometimes convenient to use T∞ as a
basic independent variable. In addition, the departure of the gas temperature from
its background value, θ = T − T∞, is a useful dependent variable. Appropriate con-
servation and rate laws are stated in § 2, and the background spatially homogeneous
response is outlined in § 3. The large activation energy high-frequency limit is dis-
cussed in § 4, where the governing nonlinear evolution equation is obtained. In § 5
it is shown that solutions with subcritical heat loss can be conveniently classified
in a (θ, T∞) diagram. Use of this plane provides a simple means of predicting the
limiting behaviour at the end of the induction domain. For a given heat transfer
rate this outcome depends both on the initial pulse amplitude and on the relation
of the background temperature to the wall temperature. Calculations of the critical
dynamic (spatially inhomogeneous) amplitude as a function of the wall heat loss and
of the initial gas temperature are presented.

In general, the applied signal is subject to amplitude dispersion, and shock for-
mation is possible (Blythe 1978; Clarke 1978, 1979). Results for a particular input
profile are obtained in § 6. It is noted there that situations can arise in which part
of the pulse exceeds the critical dynamic amplitude and ultimately generates local
ignition, whereas the remainder of the pulse collapses towards a fizzle state.

2. Conservation laws

For situations where the reactive and acoustic length-scales are comparable and much
larger than relevant diffusive scales, conservation of mass and momentum is governed
by the Euler equations

∂tρ+ ρ
∂u

∂x
= 0 (2.1)

and

ρ∂tu+
∂p

∂x
= 0, (2.2)

where the convective operator

∂t ≡ ∂

∂t
+ u

∂

∂x
. (2.3)

Here the pressure p and density ρ are made dimensionless with respect to their initial
(starting) values p′

s and ρ′
s in the region x > 0, the velocity u is non-dimensionalized

using (p′
s/ρ

′
s)

1/2, and primes denote dimensional quantities. Corresponding time- and
distance-scales are introduced through

t′ = t′hit, x′ = (p′
s/ρ

′
s)

1/2t′hix, (2.4)

where t′hi is the spatially homogeneous ignition time associated with the initial state
when heat loss to the surroundings is neglected (see § 3).

The caloric equation of state is assumed to have the general dimensionless form

e = e(p, ρ, y) (2.5)
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in which y is the reactant mass fraction; the specific internal energy e is also made
dimensionless with respect to p′

s/ρ
′
s. Similarly, the thermal equation of state is

expressed as

T = T (p, ρ, y) (2.6)

but the temperature T has been non-dimensionalized using the temperature T ′
w of

the external environment (see below).
Using (2.5) the energy equation can be formulated as

∂tp− a2∂tρ+ ρβ∂ty = −ρQ(T ;Tw), (2.7)

where Q(T ;Tw) is a phenomenological term representing heat lost to the surround-
ings, which are at a dimensionless temperature T = Tw = 1. It is assumed that

Q(1; 1) = 0 with
(

dQ
dT

)
w
> 0, (2.8)

and the cooling mechanism is of the characteristic Newton type. Also in (2.7)

a =
(
pρ−2 − ∂e/∂ρ

∂e/∂p

)1/2

(2.9)

is the frozen isentropic sound speed, and

β =
∂e/∂y

ρ∂e/∂p
(2.10)

is an effective heat release parameter. Since the formation energy

hf =
∂h

∂y

∣∣∣∣
p,T

, (2.11)

where h(p, ρ, y) is the specific enthalpy, (2.10) can be written

β =
αpa

2
T

cv

(
hf + cp

∂T

∂y

)
. (2.12)

In (2.12) cp and cv are the frozen specific heats at constant pressure and constant vol-
ume, αp is the frozen volumetric expansion coefficient, and aT is the frozen isothermal
sound speed. Note that

αp = −1
ρ

∂ρ

∂T

∣∣∣∣
p,y

, a2
T =

∂p

∂ρ

∣∣∣∣
T,y

and ραpa
2
T ≡ ∂p

∂T

∣∣∣∣
ρ,y

. (2.13)

Because of the non-dimensionalization adopted in (2.4), the appropriate form of
the rate law for one-step Arrhenius kinetics is

∂ty = −εNΛ(T )y exp{ε−1(1 − T−1)} (2.14)

with

N =
cv

hf + (cp − cv)∂T/∂y

∣∣∣∣
s
; (2.15)
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the suffix ‘s’ denotes evaluation at the initial state. The assumption that the dimen-
sionless inverse activation temperature

ε =
T ′

w

T ′
A

� 1 (2.16)

is made throughout the analysis. (T ′
A = E′

A/R, where E′
A is the activation energy

and R is an appropriate gas constant.) Introduction of the factor N into the rate
law is required by the definition of t′hi. When there is no heat loss and the initial
temperature and the wall temperature Tw are equal, i.e. Ts = Tw = 1, it follows that
the dimensionless spatially homogeneous induction time thi → 1 as ε → 0. Adoption
of the specific exponential factor employed in (2.14) implies that, in general, the
starting temperature Ts = 1 +O(ε). Note that the rate function Λ is such that

Λs = 1. (2.17)

It is convenient to put the conservation laws into characteristic form as

∂±p± ρa∂±u = ρ(Ω −Q), (2.18)

where the characteristic derivatives

∂± ≡ ∂

∂t
+ (u± a)

∂

∂x
. (2.19)

Along particle paths

∂tp− a2∂tρ = ρ(Ω −Q). (2.20)

In (2.18) and (2.19)

Ω = εNβ(p, ρ, y)Λ(T )y exp{ε−1(1 − T−1)}, (2.21)

and the rate law (2.14) can be written

∂ty = −β−1Ω(p, ρ, y). (2.22)

These equations are to be solved subject to the initial conditions

p = ρ = y = 1, T = Ts, and u = 0 at t = 0, x > 0. (2.23)

Only high-frequency, small-amplitude pulses are considered in this paper. The signals
are generated by piston motions of the form x = ε2xp(t/ε) or

u = εup(t/ε) on x = ε2xp. (2.24)

Blythe (1978), Clarke (1978, 1979), Majda & Rosales (1987) and Almgren (1991)
have previously studied this distinguished limit in which the signal amplitude and
the signal time-scale are comparable with the inverse activation temperature ε. The
adoption of (2.24) leads to a non-trivial far-field structure (see § 4), where ampli-
tude dispersion, chemistry, heat loss, and background disturbances have balancing
contributions. Moreover, if the pulse width is εt̄p, the shape function satisfies

up(0) = up(t̄p) = 0 (2.25)

so that, before shock formation, the leading edge and the tail of the signal correspond
to acceleration fronts.
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3. Background state

Before the arrival of the applied signal, a spatially homogeneous reaction takes place
in the gas. Inspection of the rate law and energy equation indicates that finite changes
in the reaction rate occur for ∆T = O(ε) and ∆y = O(ε). Suitable expansions for
this induction phase are (Kassoy 1977)

Ψ(t; ε) = Ψs + εΨ1∞(t) . . . , (3.1)

where Ψ represents p, T , or y. In addition,

u = us = 0, ρ = ρs = 1. (3.2)

Consistent with this expansion, and with the distinguished limit outlined in § 2, it is
necessary to take

Ts = 1 + εT1s. (3.3)

From (2.18)–(2.22), it is not difficult to establish that

dT∞
dt

= exp(T∞) − qT∞ (3.4)

and

dy∞
dt

= −N expT∞. (3.5)

For convenience, in (3.4) and (3.5), the subscript ‘1’ has been omitted from the
perturbation terms, and

q =
(dQ/dT )
αpa2

T

∣∣∣∣
s
> 0. (3.6)

Since

T∞(0) = Ts and y∞(0) = 0, (3.7)

where the subscript ‘1’ has again been omitted,

t =
∫ T∞

Ts

ds
es − qs

, (3.8)

y∞ = −N
∫ T∞

Ts

es

es − qs
ds, (3.9)

and

p∞ = (ραpa
2
T )s[T∞ − Ts − (∂T/∂y)sy∞]. (3.10)

When q = 0 and Ts = 0,

T∞ = − ln(1 − t) (3.11)

and, as noted in § 2, t = thi = 1 at ignition. For Ts > 0 the gas temperature is
initially hotter than that of the surroundings; Ts < 0 corresponds to a lower initial
gas temperature.
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Figure 1. Spatially homogeneous ignition times as a function of the wall heat loss for
various initial gas temperatures.

If the wall heat transfer rate is sufficiently low, specifically

q < qcrit = e, (3.12)

ignition will always occur at a time given by

t = thi(q;Ts) =
∫ ∞

Ts

ds
es − qs

. (3.13)

For q > qcrit there are two roots (Th1, Th2) of eT = qT with

Th1 < 1 < Th2. (3.14)

If Ts ≡ T∞(0) < Th2, then all solutions correspond to a fizzle such that

T∞ → Th1 as t → ∞. (3.15)

When Ts > Th2 ignition occurs irrespective of the magnitude of q, and the homoge-
neous ignition time is still defined by (3.13). The function thi(q;Ts) is displayed in
figure 1.

From the above discussion it is apparent that if Ts < 1 < Th2, then thi becomes
unbounded as q → e−. Again e ≡ qcrit. In particular, it can be established that

thi ∼ π(2/e)1/2(e− q)−1/2 as q → e− . (3.16)

Near Ts = 1, (3.16) can be extended to give

thi ∼ (2/e)1/2((π/2) + arctanφ)(e− q)−1/2, (3.17)
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where

φ =
(

e

2(e− q)

)1/2

(Ts − 1). (3.18)

Consequently, at Ts = 1

thi ∼ π√
2e

(e− q)−1/2 (3.19)

and the growth rate is one-half of that for 1 − Ts = O(1) (see (3.17)).
When Ts > 1 the algebraic growth associated with (3.17) is replaced by a loga-

rithmic behaviour. Specifically, on q = qcrit with Ts − 1 = o(1), all solutions have a
finite ignition time given by

thi =
2

e(Ts − 1)
+

2
3e

ln(Ts − 1) +O(1). (3.20)

For any given Ts > 1 the solution corresponds to a thermal explosion provided
that

q < qmax = T−1
s expTs. (3.21)

Note that when e < q < qmax

T−1
h2 expTh2 < T−1

s expTs. (3.22)

As noted earlier, since Th2 > 1, explosions occur for q > e when

Ts > Th2, (3.23)

and as q → qmax− it can be established that

thi ∼ − Ts

Ts − 1
ln(qmax − q) +O(1). (3.24)

The results (3.17)–(3.24) are reflected in the data displayed in figure 1.

4. Far-field structure

When t and x are O(ε) the near-field structure for high-frequency signals of the form
(2.24) is governed by

p− 1 = a2
s (ρ− 1) = asu = εasup(ξ1), (4.1)

where

ξ1 = ε−1(t− a−1
s x), (4.2)

and the subscript ‘s’ again denotes evaluation at the initial upstream state. Also

T − Ts = k−1
ρ (ρ− 1) (4.3)

with

kρ =
(
∂ρ

∂T

∣∣∣∣
σ,y

)
s
=

(
ραp

γ − 1

)
s
. (4.4)
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In (4.4) σ is the specific entropy and γ is the frozen specific heat ratio; the volumetric
expansion coefficient αp was defined in (2.13). It follows that within this region

y − 1 = O(ε2). (4.5)

Over a time-scale t = O(ε), the upstream perturbations p∞, T∞, etc., are also O(ε2).
(For ease of writing, the subscript ‘1’ is again omitted from the perturbation terms.)
Clearly, the leading-order structure in the near-field corresponds to the standard
linearized frozen acoustic signal. Consideration of higher-order terms, however, indi-
cates that secular behaviour can develop over a time-scale comparable with the local
induction time. In this far-field region t = O(1) and it is appropriate to introduce a
front variable

ξ̄ =
x∞(t; ε) − x

ε
= O(1), (4.6)

where
dx∞
dt

= a∞(t; ε) = as + εa1∞(t) + . . . . (4.7)

Matching with the near-field behaviour, and with the background solution, implies
that the local solution has the form

ψ(t, x; ε) = ψs + εψ1(t, ξ̄) + . . . . (4.8)

Here ψ represents T , p, ρ, u or y. Note that

ps = 1, ρs = 1, ys = 1, us = 0 and Ts = 1 + εT1s. (4.9)

As in the near field, the dependent variables relative to their background state satisfy
the linearized acoustic relations

p1 − p1∞(t) = a2
sρ1 = asu1 (4.10)

with

T1 − T1∞(t) ≡ θ(t, ξ̄) = k−1
ρ ρ1 and a1 − a1∞(t) = kaθ, (4.11)

where, for a = a(p, ρ, y),

ka =
(
∂a

∂T

∣∣∣∣
σ,y

)
s
= kρ

(
∂a

∂ρ
+ a2 ∂a

∂p

)
s
. (4.12)

Substitution of these results into the first of the characteristic relations (2.18)
yields the nonlinear evolution equation

∂θ

∂t
− θ

∂θ

∂ξ
= m(neT1∞(eθ − 1) − qθ), (4.13)

where ξ̄ = bξ and

b =
(

1
ρ

∂

∂T
(ρa)

∣∣∣∣
σ,y

)
s
, m =

(
γ − 1
2γ

)
s

and n =
(

hf + cp(∂T/∂y)
hf + (cp − cv)(∂T/∂y)

)
s
.

(4.14)
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Introduction of the characteristic paths

∂ξ

∂t

∣∣∣∣
α

= −θ with ξ = α on t = 0 (4.15)

enables (4.13) to be written

∂θ

∂t

∣∣∣∣
α

= m(neT1∞(eθ − 1) − qθ). (4.16)

The solution of (4.16) must satisfy the near-field matching condition

θ = θp(α) ≡ a−1
s k−1

ρ up(a−1
s bα) on t = 0. (4.17)

5. The (θ, T∞)-plane

Since (4.16) and (3.4) are autonomous, the solution along any characteristic path is
governed by

∂θ

∂T∞

∣∣∣∣
α

= m
neT∞(eθ − 1) − qθ

eT∞ − qT∞
. (5.1)

The case where the background state is subcritical, with

q > qcrit = e, (5.2)

is of considerable interest. As noted in § 3, provided that Ts < Th2 the restriction
(5.2) always leads to a fizzle in the upstream region. Under these circumstances,
determination of the critical amplitude θp(α) that triggers ignition is definitely of
significance.

The phase equation (5.1), subject to (5.2), has four critical points:

(i) (Th1, θ1); (ii) (Th1, 0); (iii) (Th2, θ2); (iv) (Th2, 0), (5.3)

where θi is the root of

θ

exp θ − 1
= nThi. (5.4)

In the special case when the dimensionless formation energy hf � 1, then

n ≈ 1 (5.5)

and (5.4) has solutions

θ1 = −θ2 = Th2 − Th1. (5.6)

Typical integral curves for the case (5.5) are shown schematically in figure 2. Points
(i) and (iii) correspond to saddles, whereas (ii) is a stable node and (iv) is an unstable
node. All solutions for which the initial state Ts = T∞(0) < Th2 will correspond to
explosions (θ → ∞ at a finite time) provided that

θp > θsa(T∞), (5.7)
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Figure 2. Typical integral curves in the (θ, T∞)-plane.

where θsa(T∞) is the saddle curve passing through point (i). Solutions for which

θp < θsa(Ts) and Ts < Th1 (5.8)

lead to a fizzle with T → Th1 as t → ∞. If Ts > Th2, all solutions correspond to
thermal explosions and, when θp > 0, ignition occurs within the pulse. If θp < 0, it
can be established that

T ∼ (1 −mn)T∞ as T∞ → ∞. (5.9)

When the effective heat release β and the formation energy hf are both positive it
can be shown that, irrespective of the sign of ∂T/∂y,

1 > mn > 0. (5.10)

Consequently, for expansions (θp < 0) the temperature within the pulse is lower than
that in the upstream region and a thermal explosion will first occur outside the pulse.

The phase diagram in figure 2 is appropriate for

(a) nTh2 > 1 > nTh1. (5.11)

Phase diagrams for the additional cases

(b) 1 > nTh2 > nTh1 and (c) 1 < nTh1 < nTh2 (5.12)

are easily obtained. Although the classification of the individual critical points can
change, the phase plots are topologically equivalent and the overall behaviour is
summarized in table 1.

For case (c) it should be noted that θsa = 0. Examples of θsa(T∞) are shown in
figure 3 for various q with n = 1.
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Table 1. Summary of system responses for q > e

initial state pulse amplitude result

T∞(0) < Th2 θp > θs pulse explosion
T∞(0) < Th2 θp < θs fizzle
T∞(0) > Th2 θp > 0 pulse explosion
T∞(0) > Th2 θp < 0 background explosion

T∞

θ

q = 2.75

2.5

2.0

1.5

1.0

0.5

−1.5 −1.0 −0.5 0 0.5 1.0 1.5 2.0 2.5 3.0

3.0
3.5

4.25
5.5

7.5

Figure 3. Critical amplitudes.

6. Pulse evolution

For ease of discussion it is assumed in this section that n = 1. The solution in the
(θ, T∞)-plane enables

θ = θ(t, α;Ts) (6.1)

to be obtained for a given input signal θp(α) and for prescribed values of q and γ.
As noted in § 5, for Ts < Th2 and q > e, amplification will occur only in those parts
of the signal that satisfy

θp > θcrit(q;Ts, γ) ≡ θsa. (6.2)

If the starting amplitude is below θcrit, the solution at fixed α corresponds to a fizzle
with θ → 0 as t → ∞.

Typical profiles are shown in figure 4 as a function of the characteristic coordinate
α for various times t; the input shape

θp = 3 sinα, 0 � α � π, (6.3)
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Figure 4. Evolution of the α-plane.

is symmetrical about α = π/2. In figure 4, q = 3, γ = 7/5. For simplicity, it is
assumed that the gas and environment temperatures are initially equal, so that
Ts = 0. For this example it can be established that

θcrit ≈ 0.8931 (6.4)

and the minimum ignition time

tmin ≈ 0.4089. (6.5)

The ignition event associated with (6.5) is clearly visible in figure 4, as is the limiting
behaviour characterized by (6.2).

If θp(α) is symmetric then, at a given time t, so is θ(t, α). In the physical (t, ξ)-
plane, however, the pulse shape is subject to amplitude dispersion. At constant α,
with θ(t, α) calculated from (5.1) and (4.17), it follows from (4.15) that

ξ = α −
∫ t

0
θ(s, α) ds = α −

∫ T∞

0

θ(t(v), α)
ev − qv

dv, (6.6)

where t(T∞) is defined by (3.8). Spatio-temporal development of the wave profile
is shown in figure 5 for the particular case specified in (6.3). From the figure it is
apparent that the solutions are not single valued for all t. In general, this lack of
uniqueness arises when

∂ξ

∂α

∣∣∣∣
t

= 0. (6.7)

For the pulse (6.3) this first occurs at a time

tsf ≈ 0.3478 with ξ ≈ 1.48 × 10−4. (6.8)
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Figure 5. Sine pulse evolution.

Subsequent to tsf , a shock wave develops. A discussion of shock paths is not given
in this paper, but an example for the case when q = 0 can be found in Clarke
(1979). Nevertheless, if ignition occurs along a given characteristic on which θp > 0
and dθp/dα > 0 it follows from (3.4), (5.1), and (6.6) that shock formation (lack of
uniqueness) must precede this event. As noted by Clarke (1979), on a path for which
dθp/dα ≡ 0, then ∂ξ/∂α ≡ 1, and ignition apparently occurs before local shock
formation. Consideration of the limit dθp/dα → 0+ indicates, however, that ignition
and local shock formation coincide as the turning point is approached. Further anal-
ysis of this region could yield some useful information concerning the possible birth
of a strong reaction wave or fast flame.

An earlier version of this paper was presented at the symposium on Combustion Science at the
End of the Millennium held at the University of Cambridge, April 1997. The work was completed
while the author was visiting the Department of Applied Mathematics and Theoretical Physics
at the University of Cambridge and its hospitality was much appreciated; he is also grateful to
the EPSRC for support during this period.
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